[citation]...Mais petit détail intéressant que je n'ai pas vu ailleur : C'est la somme de l'addition des chiffres d'une note dans le tableau que j'ai posté plus haut. Toujours 9 (sauf pour SOL, 3 et 6 successivement).
et alors ?[/citation]
et alors rien ! Je le mentionne car je n'ai pas vu personne en parler ailleur. Si ca peut aider ceux qui "jonglent" avec les nombres !
Voici comment on calcul :
LA/432 : 4+3+2 = 9 (facile!)
SI/486 : 4+8+6 = 18 , 1 + 8 = 9
SI/3888 : 3+8+8+8 = 27, 2 + 7 = 9
G#/410.0625 : 4+1+0+0+6+2+5 = 18, 1+ 8 = 9
A#/461.3203125 4+6+1+3+2+0+3+1+2+5 = 27, 2+7 = 9
etc...
[citation]Sauf que cette notion de nombre entier en parlant de fréquence n'avait aucun sens avant que la valeur de la seconde soit unifiée en 1967[/citation]
Pythagore utilise les rapports entiers et les proportions. Lorsqu'on pince un monocorde en son centre on obtient un rapport d'octave (1/2) et ainsi de suite. Ce n'est pas calculer en seconde. Si le temps est relatif, les rapports et les proportions ne le sont pas.
[citation]Platon, dans le Timée, décrit comment le Démiurge façonne l'Âme du monde. J.-Fr. Mattéi résume : "Le démiurge va tirer de sa composition finale une structure harmonique suggestive dont les calculs témoignent d'une influence pythagoricienne. Elle est constituée par une double progression géométrique de raison 2 (1, 2, 4, 8) et de raison 3 (1, 3, 9, 27), qu'il est commode de disposer sur un diagramme en forme de lambda majuscule (Λ
, selon un schéma que l'on trouve chez Proclus. Cette figure porte, sur chaque côté de l'angle, les nombres respectifs de la série paire et de la série impaire. Le dernier de ces nombres (27) est égal à la somme des six précédents (1 + 2 + 3 + 4 + 8 + 9 = 27)... La progression selon le facteur 2 donne les octaves par doublement successifs des intervalles (1, 2, 4, 8 = Do1, Do2, Do3, Do4...), alors que la progression selon le facteur 3 forme les douzièmes justes (1 = Do, 3 = Sol, 9 = Ré, 27 = La, 81 = Mi, 243 = SI...). On peut alors combler les intervalles musicaux doubles ou triples pour former la gamme complète en s'aidant de deux proportions continues ou 'médiétés', l'une arithmétique (de type 1, 2, 3), l'autre harmonique (de type 3, 4, 6), bien connues des pythagoriciens, en particulier Archytas. L'intervalle des nombres de 1 à 2 sera composé des nombres 1 (Tonique), 4/3 (Quarte), 3/2 (Quinte) et 2 (Octave) ; le ton, dont la valeur est 9/8, se situe entre la quarte et la quinte, puisque 3/2 : 4/3 = 9/8. L'Âme du monde est ainsi composée de cinq tons majeurs égaux entre lesquels est intercalé comme 'reste', leimma, l'intervalle de 256/243 (= 1,053), mesure du demi-ton diatonique de la gamme naturelle de Pythagore, qui est un peu plus faible que notre demi-ton tempéré (16/15 = 1,066)"[/citation]
http://fr.wikipedia.org/wiki/Symbolisme_des_nombres[citation]dans lequel Platon décrit la fabrication des proportions de l'Âme du Monde par le Démiurge. Ce passage est fondé sur la série numérique 1, 2, 3, 4, 9, 8, 27 — qui correspond à la fusion de la série des premières puissances de 2 (2, 4, 8) et de la série des premières puissances de 3 (3, 9, 27). Or, de cette série, on peut tirer les rapports numériques sur lesquels sont fondés les intervalles musicaux : le rapport de 1 à 2 (rapport double) correspond à l'octave, le rapport de 2 à 3 (rapport appelé hémiole - selon le grec - ou sesquialtère selon le terme latin) à la quinte, le rapport de 3 à 4 (épitrite ou sesquitierce) à la quarte, et le rapport de 9 à 8 (épogde ou sesquioctave) au ton. Ce passage difficile est interprété de manières différentes dans de nombreuses spéculations néoplatoniciennes, qui utilisent cette série pour décrire les rapports de distances entre les planètes — on peut évoquer notamment l'interprétation de Macrobe, dans le Commentaire au Songe de Scipion, II[/citation]
http://fr.wikipedia.org/wiki/Harmonie_des_sph%C3%A8res[citation]" En premier lieu, il a séparé du mélange total une portion. Ensuite il a pris une seconde portion double de celle-là ; puis une troisième portion égale à une fois et demie la seconde et à trois fois la première ; une quatrième double de la seconde ; une cinquième triple de la troisième ; une sixième égale à huit fois la première ; une septième égale à vingt-sept fois la première. Après cela, il a comblé les intervalles doubles et triples, détachant encore des portions du mélange primitif et les disposant entre ces parties-là, de telle sorte que, dans chaque intervalle, il y eût deux médietés. La première surpasse les extrêmes ou est surpassée par eux d’une même fraction de chacun d’eux. La seconde surpasse les extrêmes d’une quantité égale à celle dont elle est elle-même surpassée. De ces relations naissent dans les intervalles ci-dessus désignés, des intervalles nouveaux de un plus un demi, un plus un tiers, un plus un huitième. A l’aide de l’intervalle de un plus un huitième, le Dieu a comblé tous les intervalles de un plus un tiers, laissant subsister de chacun d’eux une fraction telle que l’intervalle restant fût défini par le rapport du nombre deux cent cinquante-six au nombre deux cent quarante-trois. Et ainsi, le mélange dans lequel il avait coupé ces parties se trouva employé tout entier " (2)
Nous devons à Boeckh d'avoir résolu l'énigme de l'âme du monde au 19°siècle. Rivaud, parmi d'autres, en donne une interprétation complète, condensée ici en quelques schémas (consulter aussi les notes qui accompagnent une traduction récente de Luc Brisson).
La première division du mélange consiste en l'imbrication de deux suites géométriques, l'une de raison 2 (intervalles doubles) soit 1 : 2 : 4 : 8, l'autre de raison 3 (intervalles triples) 1 : 3 : 9 : 27.(3)[/citation]
http://ww3.ac-poitiers.fr/arts_p/b@lise13/pageshtm/page_5.htm
Je pense que Pythagore, Platon et autres ont mit de l'avant ces nombres bien avant que la valeur de la seconde soit unifiée en 1967. Je ne veux pas élaborer sur le Démiurge ici. Mais ce sont ces nombres que les Pythagoriens et Platon utilisent. Beacoup de lectures reprennent ces nombres bien avant 1967.
Pour le filtre, je suis bien daccord avec tout ce que tu dis en théorie... mais je suis sur de moi. J'ai vraiment passé bcp, bcp, bcp de temps sur l'élaboration de ce filtre et mes oreilles percoivent très bien la différence au final. J'utilise SpectraPlus et TuneLab Pro. Je ne suis pas au 0.0000000001 près quand même, j'en suis consient. Mais plutôt au 0.002 Hz près. Pas besoin d'analyseur de spectre pour comparer 2 dents de scie (pourquoi une dent de scie? pour les harmoniques) détuné de 0.002 Hz. On peut percevoir à l'oreille le battement (0.002 Hz) sur plusieurs secondes (moins d'une minute quand même!). Même un rapport de quinte en utilisant 1 dents de scie, on perçoit la différence de 0.002 Hz.
Si (j'ai bien dit si!) ça t'interesse xoC, je peux t'envoyer un patch du filtre que j'ai fais pour le Nord G2.
[citation]Un key follow bien programmé va suivre le pitch total : c'est à dire midi note + fine tune. D'ailleurs les effets midi qui permettent de décaler une gamme[/citation]
J'utilise l'entrée FM Lin/Trk avec des valeurs différentes pour l'OSC et pour le filtre. Car pour la même valeur MIDI (0), les valeurs en Hz ne sont pas les mêmes. 13.75 HZ pour le filtre et 8.0187 HZ pour l'OSC. Le calcul pour l'entrée FM ne se fait pas comme pour l'entrée de pitch. Je ne travaille pas sur un architecture fermé. En modulaire on contourne et on trouve des solutions comme on peu.
[citation]Pour ma part j'opterais pour 52 800 Hz
Je suis assez curieux d'entendre ton explication la dessus
[/citation]
Pourquoi tu demandes si tu sais ? Effectivement après un overdose de fumette.. je me suis retrouvé en plein voyage astal. J'ai survollé l'Amérique, l'Europes, même le forum de Trance-Goa et j'ai eu cette révélation 52800
Merci pour les précisions sur les violons, c'est intéressant.
[citation]Et non, ne t'inquiète pas, cela ne me dérange jamais de débattre de son[/citation]
je pensais plus au fait de mentionner des détails privés. Oreille absolue, que tu possèdes un vivi, etc...